第十一届中国卫星导航年会 候选青年优秀论文公示表

姓名	李文懿	出生年月	1991.10	论文编号	CSNC-2020-0656
论文题目	基于特征的 RTK/INS/LiDAR 模糊度域紧耦合定位新算法				

论文概要

一、研究目的和方法

针对室外多样化环境下鲁棒的高精度多传感融合定位技术,本文提出一种无先验地图的RTK/INS/LiDAR 融合定位算法,旨在进一步挖掘数据融合的可能性,在边定位边建LiDAR 地图的同时,改善RTK 在复杂环境下的性能,从而更好地维持组合定位的全局精度与稳定性。

具体方法如下:起始在较开阔区域,利用RTK对LiDAR特征库进行初始化,待进入复杂环境后,再利用已建图的特征与RTK进行观测量层面的紧耦合,帮助RTK获取一个更准确的模糊度搜索中心,提高整周模糊度求解的成功率,改善RTK的性能。每次定位结果都可用来对新特征进行更新,实现一种边走边更新全局地图的定位方式。

二、主要结果与结论

本文首先就 LiDAR 特征引入对 RTK 性能的影响进行了理论公式推导与分析,分析结果表明, LiDAR 特征的引入的确可大大提高整周模糊度的固定率,即使求解失败,也可帮助 RTK 输出一个更高精度的浮点解,改善的整体输出精度。

此外,我们还搭建了可自设建筑遮挡环境、轨迹以及传感器参数的仿真平台,对一组城区多径环境下的动态数据进行了算法测试,实验结果表明相较于独立 RTK、RTK/INS 紧耦合定位方法,所提算法 RTK 固定率得到了明显的提升,最终定位精度较高。

三、主要创新点

不同于传统 RTK 单方面辅助 LiDAR 的框架, 算法从 LiDAR 辅助 RTK 的角度切入, 通过将重复观测的 LiDAR 特征与 RTK 观测量紧耦合, 帮助提高 RTK 在复杂环境下固定率, 保障无先验地图情形下组合定位的整体性能。

四、科学意义和应用前景

为维持复杂环境下融合系统的全局精度,本文提出了一种LiDAR 反向辅助 RTK 的框架,可有效提高组合定位中 RTK 的固定率,适用于室外多样化环境下无法建先验地图的应用。

五、解决的实际问题

算法通过引入 LiDAR 特征观测量,提高了 RTK 在复杂环境下的固定率,从而保障了无先验地图情形下组合定位的全局精度。

填表说明:请论文作者如实填写表格,字体采用"楷体 小四",总字数控制在600至800字。